METHOD OF CALCULATING FLOW DISTRIBUTION ALONG CONTACT,
FILTER, AND SIMILAR APPARATUS OF CYLINDRICAL SHAPE
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Gives a method of calculating the flow distribution along a porous cylinder forming the working element
of contact, filter or similar apparatus used in the chemical, metallurgical, and other industries,

We shall examine the operation of contact or filter apparatus in the form of a porous cylinder mounted coaxially

inside another cylinder with solid walls (Fig. 1). The elementary flow rate of liquid or gas dQ, through an elementary
annular area df of the porous cylinder at a distance x from

the coordinate origin, taken as the closed end of the cylin-
der, is obviously equal to

dQ, = v, fdf, = v, f = Ddx.

&

It is easy to show that for a coaxial arrangement of the
cylinders the formula for flow through the porous surface has

the form
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Here and henceforth the upper sign ("plus® or "minus™)
corresponds to the case when the direction of flow is from
the inside to the outside cylinder, and the lower sign to the
case when the flow is in the opposite direction,
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The Bernoulli equations for the cross sections x —x
and 0 —0 of each of the cylinders (inside and outside) of a
Ii-shaped apparatus (Fig. 1a), with allowance for the fact

Fig. 1. Diagram of cylindrical contact
apparatus: "a) Il-shaped; b) Z~-shaped.

that at x =0, Wy = 0, have the form:
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Simultaneous solution of Eqs, (1)-(4), after substitution of the dimensionless quantities Q; = Q./Qs; X = x/L;
S=S8¢ /F;; S*=S ¢ /F}, gives
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It is easy to understand that the flow through the layer at any segment dx is common to both cylinders, inside and
outside., Therefore in the case of a Il-shaped apparatus the flow through a section x of each of the cylinders is also the
same, i.e.,
Q=¢, o Q=0«. (6)
Hence, after certain transformations and introduction of a correction coefficient k; = 2 (from experiment), in-

stead of (5) we obtain
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Integration of Eq. (7) leads to the following final design formulas:
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It is possible to consider two forms of deviation of the flow (suction) velocities along the cylindrical layerl:
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It is easy to show that on the basis of (10) this leads to
Apax= A th A — 1. 13

In the case of a Z-shaped apparatus the Bernoulli equations for the cylinders (Fig. 1b) are written thus
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Simultaneous solution of these equations with expressions (1) and (2) gives
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In the case examined the flow through the outside (annular) cylinder at a distance x from the coordinate origin is
equal to the difference of the flows through the initial section and the section x —x of the inside cylinder:

Qi =Qi—Q, or Q; =1—0Q. amn

Hence, after appropriate transformations,
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Iy, N. Taliev, Aerodynamics of Ventilation [in Russian], Stroizdat, 1954.
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A solution is given here only for the special case when &c = &¢ =0 and Fj = Fi, and hence § =T* and
Aj; = 0. In this case instead of (18) we obtain
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Integration of this equation leads to the following final design formulas:

@, =Q, =(1 £ 0.254)% T 0.25 22, (1)
v, =14 0.25 A2 F 0.5 A2X, (22)
A Vpax= A Ugom= 0,25 A2 (23)
AB = (1 20254 F 0.5 4357, (24)
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NOTATION

Wi, Wo, Wy — mean flow velocity along the inside (porous) cylinder at the initial (x = L) and final (x = 0) sections
and at a section at distance x from the coordinate origin; wﬁ = Wy, wy — the same for the outside (annular) cylinder; vy,
vy — flow velocity through pores of cylinder of given diameter D, averaged with respect to the flow (vp, = Qi/fS;) and
true value at a given section X, respectively; Qj, Qx — flow through inside cylinder at section x =L and at a distance x
from coordinate origin, respectively; Qf, Qf, Q% — same for outside cylinder; pj, Py, Py — static pressures in inside cyl-
inder at x =L, x =0, and at a distance x from coordinate origin, respectively; p;, pf — initial total pressure in inside

. . . : . * s
and* outs*1de cylinders, respe.cuvely; Pa — atmospheric pressure; Apy=p,—pas Ap,=p,—Pa A Po= Po— Pa
A pg = py — pa — corresponding excess pressures; F; = Fy; Ff = Fy; — cross-sectional areas of inside and outside cylinders,

respectively; S; — total surface of porous cylinder of given diameter; p ~ coefficient of flow through layer (fabric);
AH]

{1 = W — resistance coefficient of layer (fabric) referred to mean flow rate through pores v; Et - total resis-
o

tance coefficient of entire filter (contact) element for motion from inside to outside cylinder reduced to the velocity wy;
EC, €% - resistance coefficients of cylinders proper, inside and annular respectively, reduced to velocities wj and w’i";

f — coefficient of clear cross section of layer (fabric); § = S¢/Fi S* = §;/F} — relative surface of porous cylinder of given
diameter D as a fraction of the cross-sectional areas of the inside and annular cylinders, respectively.
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